젊은 여성의 골다공증과 골감소증<mark>:</mark> 어떻게 대처하나**?**

Dong-Yun Lee, MD, PhD

Reproductive endocrinologist, Department of Obstetrics & Gynecology, Samsung Medical Center, Seoul, Korea

Premenopausal osteoporosis

Definition

- history of low trauma fracture
- only after excluding osteomalacia & other causes of pathologic fracture (eg, malignancy, AVN, fibrous dysplasia, other bone lesion)

Lower BMD & fracture

- in cross-sectional studies
- few longitudinal prospective studies
- predictive relationship is unclear
 - : FRAX only for \ge 40 yo
 - : DXA not sole guide for diagnosis or treatment of osteoporosis
 - not recommended as screening

DXA in premenopausal women

ISCD

- Z scores rather than T scores at the lumbar spine, hip, forearm
- Z score \leq -2.0: "below the expected range for age" (vs. within~)
- Diagnosis based on BMD T score: should NOT be applied in preMP
- Without fragility fracture or secondary cause, osteoporosis should NOT be diagnosed on DXA

IOF

- Z score ≤ -2.0: low bone mass in children, adolescents, those under 20y, some over 20y
- recommends use of T score in age 20-50y

USPSTF

- NOT recommended BMD screening in healthy preMP women with no risk factors for osteoporosis

Low bone mass in young women

- Idiopathic low BMD
- Secondary causes of osteoporosis
- Associated with pregnancy and lactation

Idiopathic low BMD

- BMD depends primarily on achievement of peak bone mass
 - at least 90% by the late teen years
 - gender, ethnicity, body size, menarchal age, region of bone
 - negative impact by genetic predisposition, illness or medication
- Idiopathic low bone density
 - likely to have abnormal bone microarchitecture (c/w osteoporosis)
 - should NOT be treated!
 - (1) currently available data do not allow using BMD by DXA to predict fracture risk in premenopausal women
 - (2) fracture risk depends greatly on age
 - (3) few studies have addressed risks and benefits of osteoporosis drugs in premenopausal women

Cause or contributor to osteoporosis & fractures

Lifestyle factors			
Alcohol abuse	Excessive thinness	Excess Vitamin A	
Frequent falling	High salt intake	Immobilization	
Inadequate physical activity	Low calcium intake	Smoking (active or passive)	
Vitamin D insufficiency			
Genetic diseases			
Cystic fibrosis	Ehlers-Danlos	Gaucher's disease	
Glycogen storage diseases	Hemochromatosis	Homocystinuria	
Hypophosphatasia	Marfan syndrome	Menkes steely hair syndrome	
Osteogenesis imperfecta	Parental history of hip fracture	Porphyria	
Riley-Day syndrome			

Cause or contributor to osteoporosis & fractures

Hypogonadal states						
Androgen insensitivity	Anorexia nervosa	Athletic amenorrhea				
Hyperprolactinemia	Panhypopituitarism	Premature menopause (<40 yrs)				
Turner's & Klinefelter's syndromes						
Endocrine disorders						
Central obesity	Cushing's syndrome	Diabetes mellitus (Types 1 & 2)				
Hyperparathyroidism	Thyrotoxicosis					
Gastrointestinal disorders						
Celiac disease	Gastric bypass	Gastrointestinal surgery				
Inflammatory bowel disease	Malabsorption	Pancreatic disease				
Primary biliary cirrhosis						
Hematologic disorders						
Hemophilia	Leukemia and lymphomas	Monoclonal gammopathies				
Multiple myeloma	Sickle cell disease	Systemic mastocytosis				
Thalassemia	• *					

Cause or contributor to osteoporosis & fractures

Rheumatologic and autoimmu	ine diseases				
Ankylosing spondylitis	Other rheumatic and autoimmune diseases				
Rheumatoid arthritis	Systemic lupus				
Neurological and musculoskel	etal risk factors				
Epilepsy	Multiple sclerosis	Muscular dystrophy			
Parkinson's disease	Spinal cord injury	Stroke			
Miscellaneous conditions and diseases					
AIDS/HIV	Alcoholism	Amyloidosis			
Chronic metabolic acidosis	Chronic obstructive lung disease	Congestive heart failure			
Depression	End stage renal disease	Hypercalciuria			
Idiopathic scoliosis	Post-transplant bone disease Sarcoidosis				
Weight loss	L	I			
Medications					
Aluminum (in antacids)	Anticoagulants (heparin)	Anticonvulsants			
Aromatase inhibitors	Barbiturates	Cancer chemotherapeutic drugs			
Depo-medroxyprogesterone (premenopausal contraception)	Glucocorticoids (≥ 5 mg/d prednisone or equivalent for ≥ 3 months)	GnRH (Gonadotropin releasing hormone) agonists			
Lithium Cyclosporine A and tacrolimus	Methotrexate	Parental nutrition			
Proton pump inhibitors	Selective serotonin reuptake inhibitors				
Tamoxifen® (premenopausal use)	Thiazolidinediones (such as Actos® and Avandia®)	Thyroid hormones (in excess)			

Exclusion of secondary causes

Consider the Following Diagnostic Studies for Secondary Causes of Osteoporosis				
Blood or Serum				
Complete blood count (CBC)				
Chemistry levels (Calcium, renal function, phosphorus and magnesium)				
Liver function tests				
Thyroid-stimulating hormone (TSH) +/- free T ₄				
25(OH)D				
Parathyroid hormone (PTH)				
Total testosterone and gonadotropin in younger men				
Bone turnover markers				
Consider in selected patients				
- Serum protein electrophoresis (SPEP), serum immunofixation, serum free light chains				
 Tissue transglutaminase antibodies (IgA and IgG) 				
 Iron and ferritin levels 				
- Homocysteine				
– Prolactin level				
– Tryptase				
Urine				
24-hour urinary calcium				
Consider in selected patients				
- Protein electrophoresis (UPEP)				
- Urinary free cortisol level				
– Urinary histamine				

SAMSUNG 삼성서울병원

Calcium in fetus

- average 30g in skeleton by term
- accreted 80% during 3rd trimester(Δ)

Calcium from mother

- must provide 100-150 mg/kg/day during $3^{rd} \Delta$ or 300-500 mg/day during final 6 weeks
- largely met by a doubling in efficiency of intestinal Ca absorption
 - : positive calcium balance by mid-pregnancy in most women

BBMs (resorption)	BBMs (formation)	BMD	n	Type of study
↑ Along pregnancy	↓ In first and second trimesters ↑In third trimester	NA	153	Controlled cohort
† Along pregnancy	↔ In first and second trimesters	↓ LS ↓ Hip	10	Cohort
↑ Along pregnancy	 ↑ In third trimester ↓ In first and second trimester ↑ In third trimester 	 ↔ Radius ↓ LS and trochanter ↔ Total hip, femoral neck, and total forearm 	15	Controlled cohort
↑ Along pregnancy	↑ In third trimester	↓ LS and pelvis ↑ Arms and legs	16	Cohort
Along pregnancy	NA	NA	22	Controlled cohort
Along pregnancy	↑ Along pregnancy	NA	20	Cohort
NA	NA	↔ LS and hip	5	Cohort
NA	NA	↓ LS, femoral neck, and radial shaft ↑Tibia	6	Controlled cohort
NA	NA	↓ LS, total hip, and trochanter ↔ Femoral neck	60	Cohort
NA	NA	LS, distal, and ultradistal radius	38	Cohort
Third trimester	↑ In third trimester	↔ Distal and ultradistal radius	10	Cohort
A	NA	↔ Femur	32	Controlled cohort
NA	NA	↓ LS, trochanter, femoral shaft, total hip, and whole body	34	Controlled cohort
NA	NA	↓ LS, total hip, whole body, and ultradistal forearm	92	Controlled cohort

BBMs, bone biochemical markers; BMD, bone mineral density; n, number of women; NA, not available; LS, lumbar spine.

Sanz-Salvador L et al., Eur J Endocrinol 2015

- Decline BMD during pregnancy?
 - No axial BMD during pregnancy d/t radiation exposure
 - May be confounded by pregnancy-related changes in body fluid, fat mass, weight, skeletal volumes
 - Not necessarily during pregnancies

Summary

- Increased intestinal calcium absorption normally meets the fetal demand for calcium.
- However, a 'small' amount of bone loss from the maternal skeleton has been detected in some longitudinal studies.
- More 'marked' bone loss is likely to occur in response to low dietary calcium intake, while variations in the amount of (or sensitivity to) PTHrP released by the breasts and placenta may in turn modulate the magnitude of bone resorption that occurs during a normal pregnancy.

Calcium in neonate

- normally accreted 30-40 mg/kg/day
- average daily maternal loss of calcium in milk: 210 mg
- first 6 months = x4 amount during 9 months of pregnancy

Calcium from mother

- intestinal calcium absorption
- : NOT the mechanism for supplying calcium for milk
- : declined to normal, non-pregnant level
- supplied through resorption of maternal skeleton
- : "brain-breast-bone circuit"

Brain-breast-bone circuit

Kovacs CS, J Mammary Gland Biol Neoplasia 2005

Resorption of skeletons during lactation

- 5-10% trabecular BMD loss during first 3-6m of lactation
- 10-15% trabecular BMD loss during lactation in adolescents
- Typical rate of BMD loss during lactation
 - approx. 1-3% per month
 vs. rapid loss of 1-2% per 'year' in postmenopausal women
 vs. 0.5-2% loss by GnRH analog for 6 months
 : synergistic effect!
- Breastfeeding prolonged periods
 - progressive bone loss?
 - normally dependent on solid food at 6 months of age
 - : much reduced amount of milk production after that time

Kovacs CS, Endocr Rev 1997 SAMSUNG

Summary

- Bone resorption occurs during lactation for calcium supply.
- 5–10 % losses in trabecular BMD (greater in adolescents), and reductions in skeletal microarchitecture can be expected.
 - MORE SUBSTANTIAL than modest resorption during pregnancy.
- Temporary loss of bone mass and strength during lactation being fully restored or compensated for in the long-term
 - recovers BMD fall within 6-12 months
 - parity & lactation do not normally increase the long-term risk of fracture
 - possibility that recovery may be incomplete in some women

Low trauma fracture +/- low BMD

- Weight-bearing exercise
- Nutrition
- Calcium and vitamin D
 - 1000 mg of calcium & 600 IU of vitamin D for preMP (IOF)
- Lifestyle modification

Medications

COCs

- in estrogen deficient women
- insufficient in anorexia nervosa or more complex condition
- unclear effects on fracture risk

SERM

- should NOT be used in menstruating women
 - : block estrogen action on bone & lead to further bone loss

Bisphosphonate

- alendronate & risedronate: approved by FDA for GIO in preMP
- rare data on fracture data and long-term risks
- category: C

Medications

Denosumab

- for postmenopausal osteoporosis
- shorter half-life vs. bisphosphonate, lack of skeletal accumulation
- NO defined efficacy and safety in preMP
- category X (fetal harm in animal studies)
- Teriparatide
 - prevent bone loss or Increase BMD in,
 - : premenopausal women on GnRH agonist for EMS
 - : premenopausal women taking glucocorticoids
 - : premenopausal women with idiopathic osteoporosis
 - : in those with anorexia nervosa
 - : pregnancy-associated osteoporosis
 - sample size? fracture risk? long-term effect?

Fractures

- Uncommon & uncertain frequency
 - may be under-reported
 - > 75% of vertebral compression fractures/deformities develop silently
- Vertebral fractures during pregnancy
 - mostly healthy: few available baseline data & generally normal blood test
 - increased weight-bearing load & lordotic posture: contributing factors
 - common coincident conditions or factors
 - usually do not recur, no increased risk of fractures with parity
- Breastfeeding or not
 - may be reasonable & appropriate to discourage when predisposed to skeletal fragility or high risk of fractures
 - but NOT contraindicated!

- Limited evidence for pregnancy-associated osteoporosis
 - no RCTs or large case series
 - clinical judgement to balance benefit & risks
- <u>Spontaneous recovery</u> of bone mass/strength typically occur!
 even in women who have fractured
- Pharmacological and surgical treatment
 - multiple vertebral fractures
 - persistent disabling pain
 - failure to achieve a satisfactory spontaneous BMD increase after weaning

Suggested strategy: for all women

Optimize calcium and vitamin D intake Early mobilization; avoid bedrest Encourage weight-bearing physical activity Consider avoiding lactation (with pregnancy fractures) or weaning baby (with lactation fractures) Avoid lifting heavy objects Avoid high risk activities that include sudden loads or risk of falls Supportive corset (temporary) for vertebral fracture pain Assess spontaneous recovery of vertebral BMD at 12–18 months and reassess

Suggested strategy: for severe cases

Analgesia

Paracetamol/acetaminophen

NSAID

Opioids

Anti-neuropathic drugs

Bone-specific therapy

Estrogen replacement for oligomenorrheic women

Bisphosphonate (e.g., alendronate, risedronate, zoledronic acid)

Denosumab

Teriparatide

Parenteral calcitonin-short-term use for vertebral fracture pain relief, if at all

Surgical treatment

Kyphoplasty

Vertebroplasty

Spinal fusion

Pharmacological therapy

- Lack of controls in all reports
 - BMD increase exceeds magnitude of expected spontaneous recover?
- Indicated for postmenopausal women
 - safety concerns about long-term effect
 - no clearly defined endpoint for treatment
- Concern for bisphosphonates
 - cross placenta & theoretically could interfere with fetal bone development
 - no obvious problems in most cases in recent review of 78 cases
 - cf. denosumab/cation strontium also cross placenta

Conclusions

- It is important to understand the definition of 'osteoporosis' in young women
 - not solely based on BMD, without fracture
- In general, osteoporosis medication is not indicated in young women even with fracture
 - non-pharmacological management has higher priority
 - use of medication with caution in specific conditions

Thank you for your attention!

ARREAD AMEUN

millin

.....